
September 10, 2007 / Vol. 5, No. 9 / CHINESE OPTICS LETTERS 549

Image recognition of laser radar using
linear SVM correlation filter
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Through deducing the relationship between support vector machine (SVM) and correlation principle, the
optimal hyperplane is proved as a correlation filter when the kernel function is the linear kernel. So a
new correlation filter, named linear SVM correlation filter (LSCF), is proposed. The filter has not only
shift-invariance, but also SVM properties. The real images of laser radar are used as experiment data, and
LSCF is used to solve the in-plane rotation invariance. The results show that the filter can recognize the
different rotated objects, and the correlation output is stable. The filter is insensitive to the noise and
gray change, and has good discrimination ability. In the same design way, LSCF is also suitable to solve
other problems of correlation distortion.

OCIS codes: 100.5760, 070.6110, 280.3640.

In recent years, correlation recognition has attracted con-
siderable attention again[1−5], because 1) the develop-
ment of the high-speed digital signal processor (DSP)
makes the correlation recognition easily meet the real-
time requirement, and the algorithm complexity of corre-
lation recognition is mainly decided by the field of view
(FOV) resolution, but not the quantities of objects in
FOV; 2) the advanced correlation filters are constantly
presented, and the performance of algorithms is improved
with respect to the distortion tolerance and discrimina-
tion. In addition, correlation filter itself has the shift-
invariance, and therefore it has practical and valuable
application. Normally, correlation filter is designed ac-
cording to the optimal criteria[6,7], such as correlation
peak criterion, energy criterion, and so on. However, the
images that are collected by sensor, such as SAR or laser
radar, usually have some changes like gray change and
target distortion, which can influence on the correlation
output performance and consequently reduce the correct
recognition rate. That is to say, the generalization of cor-
relation filter or its discrimination for untrained target is
further improved.

The theory of support vector machine (SVM) is
founded in the mid-1990’s, and it is developed based on
the statistical learning theory (SLT)[8,9]. It has behaved
some special advantages in solving the problems of small
sample, non-linear and high-dimension pattern recogni-
tion, and has become research hotspot in the field of
machine learning.

In this paper, through deducing the relationship be-
tween SVM and correlation principle, the optimal hyper-
plane is proved as an advanced correlation filter when
the kernel function of SVM is the linear kernel. So
a new correlation filter, named linear SVM correlation
filter (LSCF), is presented. The filter has not only shift-
invariance, but SVM properties, such as good generaliza-
tion. LSCF simultaneously has the distortion tolerance
and good discrimination for different objects.

Supposing in space domain, the input image is denoted
by f(x, y), and the filter is denoted by h(x, y). Correla-
tion principle between them in space domain can be given

as

f(x, y) ◦ h(x, y) =
1

MN

×
M−1∑

m=0

N−1∑

n=0

f(x+m, y + n)h∗(m,n), (1)

where the superscript ∗ denotes the conjugate of a vec-
tor, and if h is the real function, then h∗ = h. The size of
h is M ×N . The correlation values corresponding to the
locations are equal to the dot product between the filter
and the sub-images. Among all the values, the maximum
value denotes the sub-image corresponding to the loca-
tion, which is optimally matched.

Supposing a set of labeled training patterns

(z1, t1), · · · , (zl, tl), zi ∈ {−1,+1}.
The set is linearly separable if the optimal hyperplane

w · t + b = 0 can be found. The optimal hyperplane
means that it can correctly classify the training set, and
the distance between the projections of the training vec-
tors of two classes is maximal. The optimal hyperplane
is a unique one. In order to find the optimal hyperplane,
a quadratic programming problem is solved, which can
be formulated as[9]

min imize
w,b

ψ (w) =
1
2
‖w‖2

, (2)

subject to zi (w · ti + b) ≥ 1, i = 1, · · · , l. (3)

At last, the classify function based on the optimal hy-
perplane is denoted as

f(t) = sgn(
∑

SV

ziαiΦ(t) · Φ(ti) − b), (4)

where the function Φ maps the input vector t into fea-
ture space vector, SV is abbreviation of support vector,
sgn( ) is sign function. If u > 0, sgn(u) = 1; and if u ≤ 0,
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sgn(u) = −1. We can subtract sgn( ) and b from Eq. (4),
then

f ′(t) =
∑

SV

ziαiΦ(ti) · Φ(t). (5)

Vapnik has proved that SVM need not compute the
form of Φ(ti) · Φ(tj), and the kernel function can be de-
noted as dot product in high-dimensional Hilbert space:

Φ(t) · Φ(ti) = K(t, ti). (6)

At last, Eq. (5) can be rewritten based on Eq. (6) as

f ′(t) =
∑

SV

ziαiK(ti, t). (7)

At present, the types of kernel function have linear,
polynomial, radial basis function (RBF), and multi layer
perception. Specially, when the kernel is linear, the
bridge between SVM and correlation is built, and Eq. (7)
is written as

f ′(t) =
∑

SV

ziαiti · t = w · t. (8)

Comparing Eq. (8) with Eq. (1), both of them carry out
dot product. So, we can regard the optimal hyperplane
w as the correlation filter,

w = h =
∑

SV

ziαiti, (9)

consequently, the filter h is named LSCF.
Substituting Eq. (9) into Eq. (1), then

f(x, y) ◦ h(x, y) =
1

MN

×
M−1∑

m=0

N−1∑

n=0

∑

SV

ziαiti(m,n) · f(x+m, y + n). (10)

In addition, the subject condition can be described as

w · ti − b ≥ 1 zi ∈ {+1} ,
w · ti − b ≤ −1 zi ∈ {−1} . (11)

Notice that if ti belongs to the positive class, the cor-
relation output ≥ 1, and if it belongs to the negative
class, the correlation output ≤ −1. That is to say, the
minimum difference of the decision output between the
two classes is 2, which makes the filter have stable dis-
crimination ability.

Laser radar can simultaneously produce intensity im-
age and range image, and its resolution is high, which
makes it be the sensor of automatic target recognition.
Our team has developed the research work on the aspect
of the image processing and target recognition for laser
radar[10−14]. The images in Fig. 1 are collected by the
real laser radar which is developed by us. Because of
the limitation of experiment environment, the collected
images are not rich on the different FOVs. Through
rotating the image in Fig. 1 around z-axis, LSCF can be
used to solve the in-plane rotation invariance.

Figure 1(a) is the picture of QinLin building which

Fig. 1. Images of imaging laser radar. (a) Picture of QinLin
building; (b) original intensity image; (c) original range im-
age; (d) original intensity image; (e) original range image.

Fig. 2. Processed range images. (a) “Body” range image; (b)
“top” range image.

is far away from the real laser radar, Figs.1(b) and (c)
are the intensity and range images of QinLin body, and
Figs.1(d) and (e) are the images of QinLin top. They are
regarded as two class targets, named “body” which is
positive class and “top” which is negative class, respec-
tively.

Using the correlation relationship between intensity
and range information, the range image is processed as-
sociating with intensity image. The pre-processed range
images for Figs. 1(c) and (e) are shown in Fig. 2.

Artificially rotating the two objects in Fig. 2, the
training images are taken at 5◦ intervals in aspect. Af-
ter rotating 360◦, each object can produce 72 training
samples. Taking odd-number samples as training set, all
samples are as testing set. Supposing the scene of laser
radar is 150× 150, it can include multiple samples. Tak-
ing two samples from each testing set, they are put on
the scene at arbitrary position, and added background
noise in the scene[15], as shown in Fig. 3. LSCF corre-
lates with the input image, and the correlation output is
shown in Fig. 4.

In Fig. 4, LSCF restrains the background noise, the cor-
relation peaks of the positive class are maximal while the
peaks of the negative class are minimal, and all sidelobes

Fig. 3. Input image of laser radar.
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Fig. 4. Result of correlation output.

are not higher than the “body” peaks. LSCF detects or
recognizes the testing set, the correlation output is sim-
ilar to Fig. 4. That is to say, it can correctly recognize
all the test samples of the two classes, consequently the
recognition rate of LSCF is 100%.

Through changing the carry-to-noise ratio (CNR) of
target and background, it is found that when the target
CNR is less than the background CNR, LSCF can not
detect or recognize the objects, and the image signal-to-
noise ratio (SNR) is equal to −2.7 dB or so.

The factors, such as laser power being not stable, al-
ways influence on the range gray. Choosing 15 images
whose gray changes constitute test set A, and the test set
B can be obtained through preprocessing set A. Choosing
15 training samples constitute test set C. The correlation
outputs for the test sets are shown in Fig. 5. Groups I
and II label the correlation results for the test set A,
groups III and IV label the correlation results for the
test set B, groups V and VI label the correlation results
for the test set C. LSCF has the stable correlation output
for the three test sets and is not sensitive to the noise
and the gray change. The noise increases the whole value
of correlation output, however, it does not effect on the
discrimination ability of the filter for the two targets.

The statistical analysis for the correlation curves in
Fig. 5 is done, and the detailed data is shown in Table
1. It shows that the standard deviation for the curves
is small, the maximum is 0.181, and the minimum is
0.006. Then, the swing change of correlation peak height

Fig. 5. Curve chart of correlation peak.

Table 1. Curve Analysis

Image Mean STD Mean Difference

Original Body 4.01 0.055 1.19

(Test Set A) Top 2.82 0.061

Processed Body 2.31 0.181 1.75

(Test Set B) Top 0.56 0.065

Training Body 2.57 0.016 2.00

(Test Set C) Top 0.57 0.006

is small, and correlation output is stable. The average
peak height is 2 for the training samples, which tallies
the expected theory. For the test set A and B, with gray
change and noise, the average peak heights decrease 1.19
and 1.75, respectively, which states that the preprocess-
ing can enhance the discrimination ability of the filter. If
considering the real-time problems, the filter can directly
correlate with the original image.

LSCF is a good correlation filter that it removes the
restriction of a closed form solution, so it can solve the
different types of distortion recognition, such as posi-
tion, rotation, and scale invariance. The experiments
verify the filter performance, and state that the filter
has good discrimination ability, and is insensitive to the
noise and gray change. LSCF can ensure the distance be-
tween the peaks of two classes, so its correlation output
is stable. LSCF has the attractive attributes of correla-
tion and SVM, which makes it have practical application
value, such as embedding it into DSP.

J. Sun’s e-mail address is hit sunjianfeng@yahoo.com.cn.
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